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Message Authentication

• Verify that messages come from the 
alleged source, unaltered
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Authentication Functions

• Message encryption
– Ciphertext itself serves as authenticator

• Message authentication code
– Public function combines message and secret key into 

fixed length value

• Hash function
– Public function maps message into fixed length value
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Encryption for Authentication
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Encryption for Authentication
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Message Authentication Code
MAC
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MAC (cont’d)
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Message Authentication Code
MAC

• Cryptographic checksum
• Mixes message with (shared) secret key to 

produce a fixed size block
• Assurances:

– Message has not been altered
– Message is from alleged sender
– Message sequence is unaltered (requires internal 

sequencing)

• MAC algorithm need not be reversible
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Why Use MACs?

– Why not just use encryption?

• Clear-text stays clear

• MAC might be cheaper

• Broadcast

• Authentication of executables

• Separation of authentication check from message 
use
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DES-Based MAC
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MAC Requirements

• Given M and Ck(M), it must be computationally 
infeasible to construct M’ s.t. Ck(M) = Ck(M’)

• Let M’ be equal to some known transformation on 
M. Then, 

Pr[Ck(M) = Ck(M’)] = 2-n.
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One-way Hash Functions

• Converts a variable size message M into fixed size 
hash code H(M)

• Can be used with encryption for authentication
– E(M || H) 
– M || E(H)
– M || signed H
– E( M || signed H ) gives confidentiality
– M || H( M || K )
– E( M || H( M || K ) )
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Hash (cont’d)
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Hash (cont’d)

DestinationSource

M | |

H E

KR

M

EKR  [H(M)]

H

D

KU Compare

(c)

a

a

a

M | |

H

M
H

Compare
KRa KUa

E D

KK
EK[M||EKR  [H(M)]]

a

EKR  H(M)
aE

(d)

D



SMU CSE 5349/7349

Hash (cont’d)
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Hash Function Requirements

• H can be applied to any size data block

• H produces fixed length output

• H is fast

• H is one-way, i.e., given h, it is 
computationally infeasible to find any x s.t. 
h = H(x)
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Cryptanalysis of Hash Functions

• General model of hash functions
– Staged compression function f
– L stages, Y0, Y1, …, YL-1

– b input bits, n output bits per stage
– initialization value
– chaining variable

• CV0 = IV
• CVi = f(Cvi-1, Yi-1)
• H(M = Y0Y1…YL-1) = CVL
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Hash Algorithms
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Popular Algorithms
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MD5

• Message digest algorithm developed by Ron 
Rivest

• Algorithm takes a message of arbitrary 
length and produces a 128-bit digest

• The resulting digest is the unique 
“fingerprint” of the original message
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Padding

• Message is padded so that its length in bits 
is congruent to 448 modulo 512 
– Length of padded message is 64 bits less than 

an integer multiple of 512 bits

• Padding is always added even if the 
message is the desired length

• Padding consists of a single 1 bit followed 
by 0 bits
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Append Length
• A 64 bit representation of the length in 

bits of the original message (before 
padding) is appended to the result of step 
1

• If the original length is greater than 264, 
only the low-order 64 bits of the length 
are used
– The length of the outcome of the first two 

steps is multiple of 512 bits 
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Initialize MD buffer

• A 128-bit buffer is used to hold intermediate and 
final results of the hash function

• Buffer can be represented as 4 32-bit registers 
(A,B,C,D)

• As 32 bit strings the init values (in hex):
– word A: 01 23 45 67

– word B: 89 AB CD EF

– word C: FE DC BA 98

– word D: 76 54 32 10 
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Message Processing

• Message is processed in 512-bit blocks
• Each block goes through a 4 round 

compression function
• After all 512-bit blocks have been 

processed, the output from the 
compression function is the 128-bit digest
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- Each round is 16 steps, this is an ex.of a single step

- The order in which a,b,c,d is used produces a circular right 

shift of one word for each step



The Rounds

• Mi=(w0,…,w15)

• For fixed i, 4 consecutive steps will yield

ai+4 =bi +((ai +Gi (bi,ci,di)+wi+ti)<<<si)

di+4=ai+((di+Gi+1 (ai,bi,ci)+wi+1+ti+1)<<<si+1)

ci+4=di+((ci+Gi+2 (di,ai,bi)+wi+2+ti+2)<<<si+2)

bi+4=ci+((bi+Gi+3 (ci,di,ai)+wi+3+ti+3)<<<si+3)

ti and si are predefined step dependant 
constants

CLSs =Si
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• g = primitive function

• X[k] = kth 32-bit word in one of the 512 bit blocks

• T[i] = 232 x abs(sin(i))

• Round 1
– g(b,c,d) = (b AND c) OR (NOT b AND d)

– k = 0...15

– i = 1...16

• Round 2
– g(b,c,d) = (b AND d) OR (c AND NOT d)

– k = (1 + 5j)mod 16 where j = 1…16

– i = 17..32
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• Round 3
– g(b,c,d) = b XOR c XOR d
– k = (5 + 3j)mod 16 where j = 1…16 
– i = 33…48

• Round 4
– g(b,c,d) = c XOR (b OR NOT d)
– k = 7j mod 16 where j = 1…16
– i = 49…64 



Some constants

Mj is the jth sub-block of the message block.

For step i= 1 to 64:

t[i]= 232*abs(sin(i)) where i is measured in radians.

CLSs is the number of bits to be shifted:

Round 1: [7, 12, 17, 22]

Round 2: [5, 9, 14, 20]

Round 3: [4, 11, 16, 23]

Round 4: [6, 10, 15, 21]
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SHA1 & RIPEMD



SHA

SMU CSE 5349/7349
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Introduction

• Developed by NIST and published as FIP PUB 180 in 1993.

– Revised version (SHA-1) issued as FIPS PUB 180-1 in 
1995

• The algorithm takes as input a message with a maximum 
length of less than 264 bits and produces a 160-bit message 
digest.

– The input is processed in 512-bit blocks.
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Message Extension

• The processing cycle 
consists of the following 
steps:
– Append padding bits.
– Append length.
– Initialize MD buffer.
– Process the plaintext 

message in 512 bit 
blocks.

– Output the message 
digest for the plaintext 
message.



SMU CSE 5349/7349

Message Extension (cont’d)

• In SHA-1 padding is always 
added to the plaintext 
message regardless of its 
length.
– First append a binary 

“1”, then as many binary 
“0”s as needed to make 
the padded message 64 
bits short of a multiple 
of 512 bits.
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Append Length

• Finally, a block of 64 bits is 
appended to the message. 
– It contains the length 

of the original plaintext 
message prior to 
padding.

– This is an unsigned 
integer with the most 
significant bit (MSB) 
first.
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Initialize MD Buffer

• A 160-bit buffer is used to hold 
intermediate and final results of 
the hash function.

– It is represented as five 32-
bit registers {A, B, C, D, E}.

• The initial register value are:

– A = 67452301

– B = EFCDAB89

– C = 98BACDFE

– D = 10325476

– E = C3D2E1F0



SMU CSE 5349/7349

Message Processing

• The core of the algorithm 
is the HSHA compression 
function that processes 
512-bit blocks.
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Message Processing (cont’d)

• The compression function 
consists of four rounds.

• Each round consists of 20 
processing steps.

• The four rounds have a 
similar structure but each 
uses a different primitive 
logical function f1, f2, f3, 
and f4.
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SHA-1
Primitive Functions (ft)

Step Number Function Name Function Value 

   
0 ≤ t ≤ 19 f1  =  f(t, B, C, D) (B ∧ C) ∨ (∼B ∧ D) 

   
20 ≤ t ≤ 39 f2  =  f(t, B, C, D) B ⊕ C ⊕ D 

   

40 ≤ t ≤ 59 f3  =  f(t, B, C, D) (B ∧ C) ∨ (B ∧ D) ∨ (C ∧ D) 

   
60 ≤ t ≤ 79 f4  =  f(t, B, C, D) B ⊕ C ⊕ D 

   
Legend: AND:  ∧ 

OR:    ∨   

Not:   ∼ 

XOR:  ⊕ 
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SHA-1
Truth Table for Function (ft)

B C D f0…19 f20…39 f40…59 f60…79 

0 0 0 0 0 0 0 
0 0 1 1 1 0 1 

0 1 0 0 1 0 1 

0 1 1 1 0 1 0 
1 0 0 0 1 0 1 

1 0 1 0 0 1 0 
1 1 0 1 0 1 0 

1 1 1 1 1 1 1 
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SHA-1 Secure Hash Function
512-bit Block Processing Function

• Each round takes as an input the 
current 512-bit block being 
processed Yq and the 160-bit 
buffer value {ABCDE} and updates 
the contents of the buffer.

• Each round makes use of an 
additive constant Kt, where 0 ≤ t ≤ 
79 indicates one of 80 processing 
steps across four rounds.
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Additive Constants

• The value for these in hex are:
– For 0 ≤ t ≤ 19 

• Kt = 5A827999

– For 20 ≤ t ≤ 39 
• Kt = 6ED9EBA1

– For 40 ≤ t ≤ 59 
• Kt = 8F1BBCDC

– For 60 ≤ t ≤ 79 
• Kt = CA62C1D6
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Deriving 32-bit Words (Wt)

• The first sixteen values of Wt are taken directly from the 
16 words of the current block and the remaining values are 
defined as …

Wt = Wt-16 ⊕ Wt-14 ⊕ Wt-8 ⊕ Wt-3
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Single-step Operation

• The inputs to the step include:

– The contents of Registers A 
to E respectively.

– The additive constant Kt.

– The constant Wt.

• (A,B,C,D,E) <-
((E+F(t,B,C,D)+(A<<5)+Wt+
Kt),A,(B<<30),C,D)



SHA-1 algorithm

• Note: All variables are unsigned 32 bits and wrap modulo 232 when calculating

• Initialize variables:
• h0 = 0x67452301
• h1 = 0xEFCDAB89
• h2 = 0x98BADCFE
• h3 = 0x10325476
• h4 = 0xC3D2E1F0

• Pre-processing:
• append the bit '1' to the message
• append k bits '0', where k is the minimum number ≥ 0 such that the resulting message
• length (in bits) is congruent to 448 (mod 512)
• append length of message (before pre-processing), in bits, as 64-bit big-endian integer

• Process the message in successive 512-bit chunks:
• break message into 512-bit chunks
• for each chunk
• break chunk into sixteen 32-bit big-endian words w[i], 0 <= i <= 15

• Extend the sixteen 32-bit words into eighty 32-bit words:
• for i from 16 to 79
• w[i] = (w[i-3] xor w[i-8] xor w[i-14] xor w[i-16]) leftrotate 1

• Initialize hash value for this chunk:
• a = h0
• b = h1
• c = h2
• d = h3
• e = h4
• ….



SHA-1 algorithm

• Main loop:
• for i from 0 to 79
• if 0 ≤ i ≤ 19 then
• f = (b and c) or ((not b) and d)
• k = 0x5A827999
• else if 20 ≤ i ≤ 39
• f = b xor c xor d
• k = 0x6ED9EBA1
• else if 40 ≤ i ≤ 59
• f = (b and c) or (b and d) or (c and d)
• k = 0x8F1BBCDC
• else if 60 ≤ i ≤ 79
• f = b xor c xor d
• k = 0xCA62C1D6

• temp = (a leftrotate 5) + f + e + k + w[i]
• e = d
• d = c
• c = b leftrotate 30
• b = a
• a = temp

• Add this chunk's hash to result so far:
• h0 = h0 + a
• h1 = h1 + b 
• h2 = h2 + c
• h3 = h3 + d
• h4 = h4 + e

• Produce the final hash value (big-endian):
• digest = hash = h0 append h1 append h2 append h3 append h4



SMU CSE 5349/7349

SHA-1 vs. MD5

• Security against brute-force attacks
– 32 bits longer than the MD5

– Producing any message having a given message digest is on 
the order 2160 for SHA-1

– Producing 2 messages having the same message digest is 
on the order 280 for SHA-1

– Stronger against brute-force attack
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Comparison (cont’d)

– Security against cryptanalysis
• Less vulnerable against cryptanalytic attacks 

discovered since MD5’s design

– Speed
• Both algorithms rely heavily on addition modulo 232

SHA-1 involves more steps and must process a 160-bit 
buffer.

• SHA-1 should be slower than MD5
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Comparison (cont’d)

– Simplicity and Compactness
• Both are simple to describe and simple to implement

• Do not require large programs nor substitution tables

– Little-endian vs Big-endian architecture
• There appears to be no advantage to either approach
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RIPEMD-160

• Developed under the European RACE 
Integrity Primitives Evaluation project

• By a group of researchers launching 
partially successful attacks on MD4 and 
MD5

• Originally a 128-bit RIPEMD
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RIPEMD-160 Logic

• INPUT: a message of arbitrary length

• Overall processing: Similar to MD5 with a 
block length of 512 bits and a hash length 
of 160 bits

• Output: 160-bit message digest
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Processing Steps

1. Append padding bits

2.Append length

3.Initialize MD buffer

4.Process message in 512-bit blocks

5.Output



SMU CSE 5349/7349 55

Processing (cont’d)

• Initialize MD buffer
– 160-bit buffer 

– 5 32-bit registers (A, B, C, D, E)

– IV = {A=67452301,B=EFCDAB89,C=98BADCFE, 

D=10325476,E=C3D2E1F0}

– Stored in little-endian format
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Message Processing

• Process message in 512bit blocks
– Module that consists of 10 rounds of processing of 16 steps 

each
– 10 rounds are arranged as 2 parallel lines of 5 rounds
– 4 rounds have a similar structure, but each uses a different 

primitive logical function(f1,f2,f3,f4,f5)
– INPUT: 512-bit block Yq, 160-bit CVq ABCDE(L), A’B’C’D’E’(R)
– Each round uses an additive 9 constants 
– OUTPUT: CVq+1 (addition is mod 232)
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Rounds

– CVq+1(0)=CVq(1)+C+D’
– CVq+1(1)=CVq(2)+D+E’
– CVq+1(2)=CVq(3)+E+A’
– CVq+1(3)=CVq(4)+A+B’
– CVq+1(4)=CVq(0)+B+C’
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Compression

– Each round consists of a sequence of 16 steps [Figure 9.9]

– The processing algorithm of one round
A:=CVq(0);B:=CVq(1);C:=CVq(2);D:=CVq(3);E:= CVq(4) 

A’:=CVq(0);B’:=CVq(1);C’:=CVq(2);D’:=CVq(3);E’:= CVq(4) 

for j=0 to 79 do

T:=rols(j)(A+f(j,B,C,D)+Xr(j)+K(j))+E;

A:=E;E:=D;D:= rol10(C);C:=B;B:=T;

T:=rols’(j)(A’+f(79-j,B’,C’,D’)+Xr’(j)+K’(j))+E’;

A’:=E’;E’:=D’;D’:= rol10(C’);C’:=B’;B’:=T’;

enddo

CVq+1(0)=CVq(1)+C+D’; CVq+1(1)=CVq(2)+D+E’; CVq+1(2)=CVq(3)+E+A’; 
CVq+1(3)=CVq(4)+A+B’; CVq+1(4)=CVq(0)+B+C’;
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Single Step
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RIPEMD-160 Strength 

– Resistance to brute-force attack
• All 3 algorithms are invulnerable to attacks against weak 

collision resistance
• MD5 is highly vulnerable to birthday attack on strong collision 

resistance
• SHA-1 and RIPEMD-160 are safe for the foreseeable future

– Resistance to cryptanalysis
• Designed specifically to resist known cryptanalytic attacks
• The use of two lines of processing 

– gives RIPEMD-160 added complexity

– should make cryptanalysis more difficult than SHA-1
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Speed

– Speed
• All 3 algorithms rely on addition modulo 232 and simple 

bitwise logical operations

• The added complexity and number of steps of SHA-1 
and RIPEMD-160 does lead to slowdown compared to 
MD5 
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Comparison
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Performance Comparison
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HMAC

• Developing a MAC derived from a 
cryptographic hash code

• Motivations
– generally execute faster in software than 

symmetric block ciphers

– No export restrictions from US or other 
countries for cryptographic hash code
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HMAC (cont’d)

• HMAC Design Objectives [RFC2104]
– To use available hash functions. 
– To allow for easy replaceability of the 

embedded hash function
– To preserve the original performance
– To use and handle keys in simple way
– To have a well understood cryptographic 

analysis of the strength of the authentication 
mechanism
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HMAC Algorithm

1. Append zeros to the left end of K to create a 
b-bit string K+

2. XOR K+ with ipad to produce the b-bit block 
Si

3. Append M to Si

4. Apply H to the stream generated in step 3

]]||[||)[( MipadKHopadKHHMACK ⊕⊕=
++
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Algorithm (cont’d)

5. XOR K+ with opad to 
produce the b-bit block 
So

6. Append the hash result 
from step 4 to So

7. Apply H to the stream 
generated in step 6 and 
output the result
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Algorithm Logic

• Pseudorandom generation of 2 keys from K
– XOR with ipad/opad results in flipping one-half of 

the bits of K -> Si/So

• More efficient implementation is possible. 
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Security of HMAC

• Depends on the cryptographic strength of 
the underlying hash function

• Generally expressed in terms of prob. of 
successful forgery with a given amount of 
time and number of message-MAC pairs


