
SMU CSE 5349/49

Message Authentication

MAC and Hash

SMU CSE 5349/7349

Message Authentication

• Verify that messages come from the
alleged source, unaltered

SMU CSE 5349/7349

Authentication Functions

• Message encryption
– Ciphertext itself serves as authenticator

• Message authentication code
– Public function combines message and secret key into

fixed length value

• Hash function
– Public function maps message into fixed length value

SMU CSE 5349/7349

Encryption for Authentication

EM MD

K KEK(M)

EM MD

KU KREKU (M)b bb

(a) Conventional encryption : confidentiality and authentication

(b) Public-key encryption : confidentiality

SMU CSE 5349/7349

Encryption for Authentication

EM MD

KRa KUaEKR (M)
a

(c) Public-key encryption : authentication and signature

Destination

M ME E D D

KRa
EKR (M)

a KUb
EKU [EKR (M)]

b a KRb KUa

(d) Public-key encryption : confidentiality, authentication and signature

EKR (M)
a

SMU CSE 5349/7349

Message Authentication Code
MAC

M | |

C

M
C

Compare

K
K

CK(M)

Source Destination

SMU CSE 5349/7349

MAC (cont’d)

M | |

C

M
C

Compare
K1

K1

Source Destination

Message authentication and confidentiality; authentication tied to plaintext

E D

K2K2
EK [M||CK (M)]

12

CK (M)
1

C

K1

M
| |E

K2

C

K1

Compare

D

K2

M

EK [M]
2

CK (EK [M])
1 2

Message authentication and confidentiality; authentication tied to ciphertext

SMU CSE 5349/7349

Message Authentication Code
MAC

• Cryptographic checksum
• Mixes message with (shared) secret key to

produce a fixed size block
• Assurances:

– Message has not been altered
– Message is from alleged sender
– Message sequence is unaltered (requires internal

sequencing)

• MAC algorithm need not be reversible

SMU CSE 5349/7349

Why Use MACs?

– Why not just use encryption?

• Clear-text stays clear

• MAC might be cheaper

• Broadcast

• Authentication of executables

• Separation of authentication check from message
use

SMU CSE 5349/7349

DES-Based MAC

D1
(64 bits)

D2

DES

encryptK
(56 bits)

+

DES

encrypt

O1
(64 bits)

O2

K

Time = 1 Time = 2

DN – 1

+

DES

encrypt

ON – 1

K

Time = N – 1

DN

+

DES

encrypt

ON

K

Time = N

• • •

DAC
(16 to 64 bits)

SMU CSE 5349/7349

MAC Requirements

• Given M and Ck(M), it must be computationally
infeasible to construct M’ s.t. Ck(M) = Ck(M’)

• Let M’ be equal to some known transformation on
M. Then,

Pr[Ck(M) = Ck(M’)] = 2-n.

SMU CSE 5349/7349

One-way Hash Functions

• Converts a variable size message M into fixed size
hash code H(M)

• Can be used with encryption for authentication
– E(M || H)
– M || E(H)
– M || signed H
– E(M || signed H) gives confidentiality
– M || H(M || K)
– E(M || H(M || K))

SMU CSE 5349/7349

Hash (cont’d)

M | |

H

M
H

Compare

Destination

E D

KK
EK[M||H(M)]

H(M)

Source

M | |

H E

K

M

EK[H(M)]

H

D

K Compare

(a)

(b)

SMU CSE 5349/7349

Hash (cont’d)

DestinationSource

M | |

H E

KR

M

EKR [H(M)]

H

D

KU Compare

(c)

a

a

a

M | |

H

M
H

Compare
KRa KUa

E D

KK
EK[M||EKR [H(M)]]

a

EKR H(M)
aE

(d)

D

SMU CSE 5349/7349

Hash (cont’d)

M | | M H

Compare

H(M||S)H

(f)

s | |

| |s

M | |

Hs | |

E

DestinationSource

D

KK
EK[M||H(M||S)]

M H

Compare

H(M||S)

| |s

(e)

SMU CSE 5349/7349

Hash Function Requirements

• H can be applied to any size data block

• H produces fixed length output

• H is fast

• H is one-way, i.e., given h, it is
computationally infeasible to find any x s.t.
h = H(x)

SMU CSE 5349/7349

Cryptanalysis of Hash Functions

• General model of hash functions
– Staged compression function f
– L stages, Y0, Y1, …, YL-1

– b input bits, n output bits per stage
– initialization value
– chaining variable

• CV0 = IV
• CVi = f(Cvi-1, Yi-1)
• H(M = Y0Y1…YL-1) = CVL

SMU CSE 5349/49

Hash Algorithms

SMU CSE 5349/7349

Popular Algorithms

SMU CSE 5349/7349

MD5

• Message digest algorithm developed by Ron
Rivest

• Algorithm takes a message of arbitrary
length and produces a 128-bit digest

• The resulting digest is the unique
“fingerprint” of the original message

SMU CSE 5349/7349

Padding

• Message is padded so that its length in bits
is congruent to 448 modulo 512
– Length of padded message is 64 bits less than

an integer multiple of 512 bits

• Padding is always added even if the
message is the desired length

• Padding consists of a single 1 bit followed
by 0 bits

SMU CSE 5349/7349

Append Length
• A 64 bit representation of the length in

bits of the original message (before
padding) is appended to the result of step
1

• If the original length is greater than 264,
only the low-order 64 bits of the length
are used
– The length of the outcome of the first two

steps is multiple of 512 bits

SMU CSE 5349/7349

Initialize MD buffer

• A 128-bit buffer is used to hold intermediate and
final results of the hash function

• Buffer can be represented as 4 32-bit registers
(A,B,C,D)

• As 32 bit strings the init values (in hex):
– word A: 01 23 45 67

– word B: 89 AB CD EF

– word C: FE DC BA 98

– word D: 76 54 32 10

SMU CSE 5349/7349

Message 100…0

message

length

L X 512 bits

Block0
... ...

512 bits

Block

1

Blockn BlockL-1

HMD5 HMD5 HMD5 HMD5

512

MD

buffer0

128

128-bit

digest

MD

buffer1

MD

buffern

MD

bufferL-1

HMD5 = 4-round compression function

SMU CSE 5349/7349

Message Processing

• Message is processed in 512-bit blocks
• Each block goes through a 4 round

compression function
• After all 512-bit blocks have been

processed, the output from the
compression function is the 128-bit digest

SMU CSE 5349/7349

Block q

512 A B C D

+ + + +

32

128Buffer q

128Buffer q +1

Round 1

Round 2

Round 3

Round 4

SMU CSE 5349/7349

A B C D

+

+

+

+

g

X[k]

T[i]

CLSs

A B C D

- Each round is 16 steps, this is an ex.of a single step

- The order in which a,b,c,d is used produces a circular right

shift of one word for each step

The Rounds

• Mi=(w0,…,w15)

• For fixed i, 4 consecutive steps will yield

ai+4 =bi +((ai +Gi (bi,ci,di)+wi+ti)<<<si)

di+4=ai+((di+Gi+1 (ai,bi,ci)+wi+1+ti+1)<<<si+1)

ci+4=di+((ci+Gi+2 (di,ai,bi)+wi+2+ti+2)<<<si+2)

bi+4=ci+((bi+Gi+3 (ci,di,ai)+wi+3+ti+3)<<<si+3)

ti and si are predefined step dependant
constants

CLSs =Si

SMU CSE 5349/7349

• g = primitive function

• X[k] = kth 32-bit word in one of the 512 bit blocks

• T[i] = 232 x abs(sin(i))

• Round 1
– g(b,c,d) = (b AND c) OR (NOT b AND d)

– k = 0...15

– i = 1...16

• Round 2
– g(b,c,d) = (b AND d) OR (c AND NOT d)

– k = (1 + 5j)mod 16 where j = 1…16

– i = 17..32

SMU CSE 5349/7349

• Round 3
– g(b,c,d) = b XOR c XOR d
– k = (5 + 3j)mod 16 where j = 1…16
– i = 33…48

• Round 4
– g(b,c,d) = c XOR (b OR NOT d)
– k = 7j mod 16 where j = 1…16
– i = 49…64

Some constants

Mj is the jth sub-block of the message block.

For step i= 1 to 64:

t[i]= 232*abs(sin(i)) where i is measured in radians.

CLSs is the number of bits to be shifted:

Round 1: [7, 12, 17, 22]

Round 2: [5, 9, 14, 20]

Round 3: [4, 11, 16, 23]

Round 4: [6, 10, 15, 21]

SMU CSE 5349/49

SHA1 & RIPEMD

SHA

SMU CSE 5349/7349

SMU CSE 5349/7349

Introduction

• Developed by NIST and published as FIP PUB 180 in 1993.

– Revised version (SHA-1) issued as FIPS PUB 180-1 in
1995

• The algorithm takes as input a message with a maximum
length of less than 264 bits and produces a 160-bit message
digest.

– The input is processed in 512-bit blocks.

SMU CSE 5349/7349

Message Extension

• The processing cycle
consists of the following
steps:
– Append padding bits.
– Append length.
– Initialize MD buffer.
– Process the plaintext

message in 512 bit
blocks.

– Output the message
digest for the plaintext
message.

SMU CSE 5349/7349

Message Extension (cont’d)

• In SHA-1 padding is always
added to the plaintext
message regardless of its
length.
– First append a binary

“1”, then as many binary
“0”s as needed to make
the padded message 64
bits short of a multiple
of 512 bits.

SMU CSE 5349/7349

Append Length

• Finally, a block of 64 bits is
appended to the message.
– It contains the length

of the original plaintext
message prior to
padding.

– This is an unsigned
integer with the most
significant bit (MSB)
first.

SMU CSE 5349/7349

Initialize MD Buffer

• A 160-bit buffer is used to hold
intermediate and final results of
the hash function.

– It is represented as five 32-
bit registers {A, B, C, D, E}.

• The initial register value are:

– A = 67452301

– B = EFCDAB89

– C = 98BACDFE

– D = 10325476

– E = C3D2E1F0

SMU CSE 5349/7349

Message Processing

• The core of the algorithm
is the HSHA compression
function that processes
512-bit blocks.

SMU CSE 5349/7349

Message Processing (cont’d)

• The compression function
consists of four rounds.

• Each round consists of 20
processing steps.

• The four rounds have a
similar structure but each
uses a different primitive
logical function f1, f2, f3,
and f4.

SMU CSE 5349/7349

SHA-1
Primitive Functions (ft)

Step Number Function Name Function Value

0 ≤ t ≤ 19 f1 = f(t, B, C, D) (B ∧ C) ∨ (∼B ∧ D)

20 ≤ t ≤ 39 f2 = f(t, B, C, D) B ⊕ C ⊕ D

40 ≤ t ≤ 59 f3 = f(t, B, C, D) (B ∧ C) ∨ (B ∧ D) ∨ (C ∧ D)

60 ≤ t ≤ 79 f4 = f(t, B, C, D) B ⊕ C ⊕ D

Legend: AND: ∧

OR: ∨

Not: ∼

XOR: ⊕

SMU CSE 5349/7349

SHA-1
Truth Table for Function (ft)

B C D f0…19 f20…39 f40…59 f60…79

0 0 0 0 0 0 0
0 0 1 1 1 0 1

0 1 0 0 1 0 1

0 1 1 1 0 1 0
1 0 0 0 1 0 1

1 0 1 0 0 1 0
1 1 0 1 0 1 0

1 1 1 1 1 1 1

SMU CSE 5349/7349

SHA-1 Secure Hash Function
512-bit Block Processing Function

• Each round takes as an input the
current 512-bit block being
processed Yq and the 160-bit
buffer value {ABCDE} and updates
the contents of the buffer.

• Each round makes use of an
additive constant Kt, where 0 ≤ t ≤
79 indicates one of 80 processing
steps across four rounds.

SMU CSE 5349/7349

Additive Constants

• The value for these in hex are:
– For 0 ≤ t ≤ 19

• Kt = 5A827999

– For 20 ≤ t ≤ 39
• Kt = 6ED9EBA1

– For 40 ≤ t ≤ 59
• Kt = 8F1BBCDC

– For 60 ≤ t ≤ 79
• Kt = CA62C1D6

SMU CSE 5349/7349

Deriving 32-bit Words (Wt)

• The first sixteen values of Wt are taken directly from the
16 words of the current block and the remaining values are
defined as …

Wt = Wt-16 ⊕ Wt-14 ⊕ Wt-8 ⊕ Wt-3

SMU CSE 5349/7349

Single-step Operation

• The inputs to the step include:

– The contents of Registers A
to E respectively.

– The additive constant Kt.

– The constant Wt.

• (A,B,C,D,E) <-
((E+F(t,B,C,D)+(A<<5)+Wt+
Kt),A,(B<<30),C,D)

SHA-1 algorithm

• Note: All variables are unsigned 32 bits and wrap modulo 232 when calculating

• Initialize variables:
• h0 = 0x67452301
• h1 = 0xEFCDAB89
• h2 = 0x98BADCFE
• h3 = 0x10325476
• h4 = 0xC3D2E1F0

• Pre-processing:
• append the bit '1' to the message
• append k bits '0', where k is the minimum number ≥ 0 such that the resulting message
• length (in bits) is congruent to 448 (mod 512)
• append length of message (before pre-processing), in bits, as 64-bit big-endian integer

• Process the message in successive 512-bit chunks:
• break message into 512-bit chunks
• for each chunk
• break chunk into sixteen 32-bit big-endian words w[i], 0 <= i <= 15

• Extend the sixteen 32-bit words into eighty 32-bit words:
• for i from 16 to 79
• w[i] = (w[i-3] xor w[i-8] xor w[i-14] xor w[i-16]) leftrotate 1

• Initialize hash value for this chunk:
• a = h0
• b = h1
• c = h2
• d = h3
• e = h4
• ….

SHA-1 algorithm

• Main loop:
• for i from 0 to 79
• if 0 ≤ i ≤ 19 then
• f = (b and c) or ((not b) and d)
• k = 0x5A827999
• else if 20 ≤ i ≤ 39
• f = b xor c xor d
• k = 0x6ED9EBA1
• else if 40 ≤ i ≤ 59
• f = (b and c) or (b and d) or (c and d)
• k = 0x8F1BBCDC
• else if 60 ≤ i ≤ 79
• f = b xor c xor d
• k = 0xCA62C1D6

• temp = (a leftrotate 5) + f + e + k + w[i]
• e = d
• d = c
• c = b leftrotate 30
• b = a
• a = temp

• Add this chunk's hash to result so far:
• h0 = h0 + a
• h1 = h1 + b
• h2 = h2 + c
• h3 = h3 + d
• h4 = h4 + e

• Produce the final hash value (big-endian):
• digest = hash = h0 append h1 append h2 append h3 append h4

SMU CSE 5349/7349

SHA-1 vs. MD5

• Security against brute-force attacks
– 32 bits longer than the MD5

– Producing any message having a given message digest is on
the order 2160 for SHA-1

– Producing 2 messages having the same message digest is
on the order 280 for SHA-1

– Stronger against brute-force attack

SMU CSE 5349/7349 50

Comparison (cont’d)

– Security against cryptanalysis
• Less vulnerable against cryptanalytic attacks

discovered since MD5’s design

– Speed
• Both algorithms rely heavily on addition modulo 232

SHA-1 involves more steps and must process a 160-bit
buffer.

• SHA-1 should be slower than MD5

SMU CSE 5349/7349 51

Comparison (cont’d)

– Simplicity and Compactness
• Both are simple to describe and simple to implement

• Do not require large programs nor substitution tables

– Little-endian vs Big-endian architecture
• There appears to be no advantage to either approach

SMU CSE 5349/7349 52

RIPEMD-160

• Developed under the European RACE
Integrity Primitives Evaluation project

• By a group of researchers launching
partially successful attacks on MD4 and
MD5

• Originally a 128-bit RIPEMD

SMU CSE 5349/7349 53

RIPEMD-160 Logic

• INPUT: a message of arbitrary length

• Overall processing: Similar to MD5 with a
block length of 512 bits and a hash length
of 160 bits

• Output: 160-bit message digest

SMU CSE 5349/7349 54

Processing Steps

1. Append padding bits

2.Append length

3.Initialize MD buffer

4.Process message in 512-bit blocks

5.Output

SMU CSE 5349/7349 55

Processing (cont’d)

• Initialize MD buffer
– 160-bit buffer

– 5 32-bit registers (A, B, C, D, E)

– IV = {A=67452301,B=EFCDAB89,C=98BADCFE,

D=10325476,E=C3D2E1F0}

– Stored in little-endian format

SMU CSE 5349/7349 56

Message Processing

• Process message in 512bit blocks
– Module that consists of 10 rounds of processing of 16 steps

each
– 10 rounds are arranged as 2 parallel lines of 5 rounds
– 4 rounds have a similar structure, but each uses a different

primitive logical function(f1,f2,f3,f4,f5)
– INPUT: 512-bit block Yq, 160-bit CVq ABCDE(L), A’B’C’D’E’(R)
– Each round uses an additive 9 constants
– OUTPUT: CVq+1 (addition is mod 232)

SMU CSE 5349/7349 57

Rounds

– CVq+1(0)=CVq(1)+C+D’
– CVq+1(1)=CVq(2)+D+E’
– CVq+1(2)=CVq(3)+E+A’
– CVq+1(3)=CVq(4)+A+B’
– CVq+1(4)=CVq(0)+B+C’

SMU CSE 5349/7349 58

Compression

– Each round consists of a sequence of 16 steps [Figure 9.9]

– The processing algorithm of one round
A:=CVq(0);B:=CVq(1);C:=CVq(2);D:=CVq(3);E:= CVq(4)

A’:=CVq(0);B’:=CVq(1);C’:=CVq(2);D’:=CVq(3);E’:= CVq(4)

for j=0 to 79 do

T:=rols(j)(A+f(j,B,C,D)+Xr(j)+K(j))+E;

A:=E;E:=D;D:= rol10(C);C:=B;B:=T;

T:=rols’(j)(A’+f(79-j,B’,C’,D’)+Xr’(j)+K’(j))+E’;

A’:=E’;E’:=D’;D’:= rol10(C’);C’:=B’;B’:=T’;

enddo

CVq+1(0)=CVq(1)+C+D’; CVq+1(1)=CVq(2)+D+E’; CVq+1(2)=CVq(3)+E+A’;
CVq+1(3)=CVq(4)+A+B’; CVq+1(4)=CVq(0)+B+C’;

SMU CSE 5349/7349 59

Single Step

SMU CSE 5349/7349 60

RIPEMD-160 Strength

– Resistance to brute-force attack
• All 3 algorithms are invulnerable to attacks against weak

collision resistance
• MD5 is highly vulnerable to birthday attack on strong collision

resistance
• SHA-1 and RIPEMD-160 are safe for the foreseeable future

– Resistance to cryptanalysis
• Designed specifically to resist known cryptanalytic attacks
• The use of two lines of processing

– gives RIPEMD-160 added complexity

– should make cryptanalysis more difficult than SHA-1

SMU CSE 5349/7349 61

Speed

– Speed
• All 3 algorithms rely on addition modulo 232 and simple

bitwise logical operations

• The added complexity and number of steps of SHA-1
and RIPEMD-160 does lead to slowdown compared to
MD5

SMU CSE 5349/7349

Comparison

SMU CSE 5349/7349

Performance Comparison

SMU CSE 5349/7349 64

HMAC

• Developing a MAC derived from a
cryptographic hash code

• Motivations
– generally execute faster in software than

symmetric block ciphers

– No export restrictions from US or other
countries for cryptographic hash code

SMU CSE 5349/7349 65

HMAC (cont’d)

• HMAC Design Objectives [RFC2104]
– To use available hash functions.
– To allow for easy replaceability of the

embedded hash function
– To preserve the original performance
– To use and handle keys in simple way
– To have a well understood cryptographic

analysis of the strength of the authentication
mechanism

SMU CSE 5349/7349 66

HMAC Algorithm

1. Append zeros to the left end of K to create a
b-bit string K+

2. XOR K+ with ipad to produce the b-bit block
Si

3. Append M to Si

4. Apply H to the stream generated in step 3

]]||[||)[(MipadKHopadKHHMACK ⊕⊕=
++

SMU CSE 5349/7349 67

Algorithm (cont’d)

5. XOR K+ with opad to
produce the b-bit block
So

6. Append the hash result
from step 4 to So

7. Apply H to the stream
generated in step 6 and
output the result

SMU CSE 5349/7349 68

Algorithm Logic

• Pseudorandom generation of 2 keys from K
– XOR with ipad/opad results in flipping one-half of

the bits of K -> Si/So

• More efficient implementation is possible.

SMU CSE 5349/7349 69

Security of HMAC

• Depends on the cryptographic strength of
the underlying hash function

• Generally expressed in terms of prob. of
successful forgery with a given amount of
time and number of message-MAC pairs

