Message Authentication

MAC and Hash

Message Authentication

- Verify that messages come from the alleged source, unaltered

Authentication Functions

- Message encryption
- Ciphertext itself serves as authenticator
- Message authentication code
- Public function combines message and secret key into fixed length value
- Hash function
- Public function maps message into fixed length value

Encryption for Authentication

(a) Conventional encryption : confidentiality and authentication

(b) Public-key encryption : confidentiality

Encryption for Authentication

(c) Public-key encryption : authentication and signature

(d) Public-key encryption : confidentiality, authentication and signature

Message Authentication Code

 MAC

MAC (cont'd)

Message authentication and confidentiality; authentication tied to plaintext

Message authentication and confidentiality; authentication tied to ciphertext

Message Authentication Code

- Cryptographic checksum
- Mixes message with (shared) secret key to produce a fixed size block
- Assurances:
- Message has not been altered
- Message is from alleged sender
- Message sequence is unaltered (requires internal sequencing)
- MAC algorithm need not be reversible

Why Use MACs?

- Why not just use encryption?
- Clear-text stays clear
- MAC might be cheaper
- Broadcast
- Authentication of executables
- Separation of authentication check from message use

DES-Based MAC

MAC Requirements

- Given M and $C_{k}(M)$, it must be computationally infeasible to construct M^{\prime} s.t. $C_{k}(M)=C_{k}\left(M^{\prime}\right)$
- Let M^{\prime} be equal to some known transformation on M. Then,

$$
\operatorname{Pr}\left[C_{k}(M)=C_{k}\left(M^{\prime}\right)\right]=2^{-n .}
$$

One-way Hash Functions

- Converts a variable size message M into fixed size hash code H(M)
- Can be used with encryption for authentication
- $E(M|\mid H)$
- $M \| E(H)$
- $M|\mid$ signed H
- $E(M|\mid$ signed $H)$ gives confidentiality
- $M \| H(M \| K)$
- $E(M \| H(M \| K))$

Hash (cont'd)

Hash (cont'd)

Hash (cont'd)

Hash Function Requirements

- H can be applied to any size data block
- H produces fixed length output
- His fast
- H is one-way, i.e., given h, it is computationally infeasible to find any x s.t. $h=H(x)$

Cryptanalysis of Hash Functions

- General model of hash functions
- Staged compression function f
- L stages, $\mathrm{Y}_{0}, \mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{L}-1}$
- binput bits, n output bits per stage
- initialization value
- chaining variable
- $C V_{0}=I V$
- $C V_{i}=f\left(C v_{i-1}, Y_{i-1}\right)$
- $H\left(M=Y_{0} Y_{1} \ldots Y_{L-1}\right)=C V_{L}$

Hash Algorithms

Popular Algorithms

MD5

- Message digest algorithm developed by Ron Rivest
- Algorithm takes a message of arbitrary length and produces a 128-bit digest
- The resulting digest is the unique "fingerprint" of the original message

Padding

- Message is padded so that its length in bits is congruent to 448 modulo 512
- Length of padded message is 64 bits less than an integer multiple of 512 bits
- Padding is always added even if the message is the desired length
- Padding consists of a single 1 bit followed by 0 bits

Append Length

- A 64 bit representation of the length in bits of the original message (before padding) is appended to the result of step 1
- If the original length is greater than 2^{64}, only the low-order 64 bits of the length are used
- The length of the outcome of the first two steps is multiple of 512 bits

Initialize MD buffer

- A 128-bit buffer is used to hold intermediate and final results of the hash function
- Buffer can be represented as 4 32-bit registers (A, B, C, D)
- As 32 bit strings the init values (in hex):
- word A: 01234567
- word B: 89 AB CD EF
- word C: FE DC BA 98
- word D: 76543210

Message Processing

- Message is processed in 512-bit blocks
- Each block goes through a 4 round compression function
- After all 512-bit blocks have been processed, the output from the compression function is the 128-bit digest

- Each round is 16 steps, this is an ex.of a single step
- The order in which $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ is used produces a circular right shift of one word for each step

The Rounds

- $M_{i}=\left(w_{0}, \ldots, w_{15}\right)$
- For fixed i, 4 consecutive steps will yield $a_{i+4}=b_{i}+\left(\left(a_{i}+G_{i}\left(b_{i}, c_{i}, d_{i}\right)+w_{i}+t_{j}\right) \lll s_{i}\right)$ $d_{i+4}=a_{i}+\left(\left(d_{i}+G_{i+1}\left(a_{i}, b_{i}, c_{i}\right)+w_{i+1}+t_{i+1}\right) \lll s_{i+1}\right)$
$c_{i+4}=d_{i}+\left(\left(c_{i}+G_{i+2}\left(d_{i}, a_{i}, b_{i}\right)+w_{i+2}+t_{i+2}\right) \lll<s_{i+2}\right)$ $b_{i+4}=c_{i}+\left(\left(b_{i}+G_{i+3}\left(c_{i}, d_{i}, a_{i}\right)+w_{i+3}+t_{i+3}\right) \lll s_{i+3}\right)$
t_{i} and s_{i} are predefined step dependant constants
$C L S_{s=S i}$
- $g=$ primitive function
- $X[k]=k t h 32$-bit word in one of the 512 bit blocks
- $T[i]=2^{32} \times a b s(\sin (i))$
- Round 1
- $g(b, c, d)=(b$ AND $c)$ OR (NOT b AND d)
- $k=0 . . .15$
- $i=1 . . .16$
- Round 2
- $g(b, c, d)=(b$ AND d) OR (c AND NOT d)
- $k=(1+5 j) \bmod 16$ where $j=1 \ldots 16$
$-i=17 . .32$
- Round 3
- $g(b, c, d)=b$ XOR c XOR d
- $k=(5+3 j) \bmod 16$ where $j=1 . . .16$
- $i=33 . . .48$
- Round 4
- $g(b, c, d)=c$ XOR (b OR NOT d)
- $k=7 j \bmod 16$ where $j=1 . . .16$
- i = 49... 64

Some constants

M_{j} is the $\mathrm{j}^{\text {th }}$ sub-block of the message block.
For step $i=1$ to 64: $t[i]=2^{32} * \operatorname{abs}(\sin (\mathrm{i}))$ where i is measured in radians.
$\mathrm{CLS}_{\mathrm{s}}$ is the number of bits to be shifted:
Round 1: [7, 12, 17, 22]
Round 2: [5, 9, 14, 20]
Round 3: [4, 11, 16, 23]
Round 4: [6, 10, 15, 21]

SHA1 \& RIPEMD

SHA

Algorithm	Output size (bits)	Internal state size (bits)	Block size (bits)	Max message size (bits)	Word size (bits)	Rounds	Operations	Collision
SHA-0	160	160	512	$2^{64}-1$	32	80	+, and, or, Xor,rotfl	Yes
SHA-1	160	160	512	2-1	32	80	+,and,or,xor,rotil	2^{63} attack
SHA-256/224	256/224	256	512	$2^{64}-1$	32	64	+, and,or, xor, shr,rotir	None
SHA-512/384	512/384	512	1024	$2^{128}-1$	64	80	+, and,or,xor,shr,rotfr	None

Introduction

- Developed by NIST and published as FIP PUB 180 in 1993.
- Revised version (SHA-1) issued as FIPS PUB 180-1 in 1995
- The algorithm takes as input a message with a maximum length of less than 2^{64} bits and produces a 160-bit message digest.
- The input is processed in 512-bit blocks.

Message Extension

- The processing cycle consists of the following steps:
- Append padding bits.
- Append length.
- Initialize MD buffer.
- Process the plaintext message in 512 bit
 blocks.
- Output the message digest for the plaintext message.

Message Extension (cont'd)

- In SHA-1 padding is always added to the plaintext message regardless of its length.
- First append a binary "1", then as many binary "0"s as needed to make the padded message 64 bits short of a multiple
 of 512 bits.

Append Length

- Finally, a block of 64 bits is appended to the message.
- It contains the length of the original plaintext message prior to padding.
- This is an unsigned
 integer with the most significant bit (MSB) first.

Initialize MD Buffer

- A 160-bit buffer is used to hold intermediate and final results of the hash function.
- It is represented as five 32bit registers $\{A, B, C, D, E\}$.
- The initial register value are:
- $A=67452301$
- $B=E F C D A B 89$

- $C=98 B A C D F E$
- $D=10325476$
- $E=C 3 D 2 E 1 F 0$

Message Processing

- The core of the algorithm is the $\mathrm{H}_{\text {SHA }}$ compression function that processes 512-bit blocks.

Message Processing (cont'd)

- The compression function consists of four rounds.
- Each round consists of 20 processing steps.
- The four rounds have a similar structure but each uses a different primitive logical function f_{1}, f_{2}, f_{3}, and f_{4}.

SHA-1
 Primitive Functions (f_{+})

Step Number
$0 \leq t \leq 19$
$20 \leq t \leq 39$
$40 \leq t \leq 59$
$60 \leq t \leq 79$

Legend:

Function Name

$f_{1}=f(t, B, C, D)$
$f_{2}=f(t, B, C, D)$
$f_{3}=f(t, B, C, D)$
$f_{4}=f(t, B, C, D)$
AND: ^
OR:

Function Value

$$
\begin{gathered}
(B \wedge C) \vee(\sim B \wedge D) \\
B \oplus C \oplus D \\
(B \wedge C) \vee(B \wedge D) \vee(C \wedge D) \\
B \oplus C \oplus D
\end{gathered}
$$

Not: ~
XOR: \oplus

SHA-1
 Truth Table for Function (f_{+})

\mathbf{B}	\mathbf{C}	\mathbf{D}	$\mathbf{f}_{0 . \ldots \mathbf{1 9}}$	$\mathbf{f}_{\mathbf{2 0} \ldots . .39}$	$\mathbf{f}_{\mathbf{4 0} \ldots . .59}$	$\mathbf{f}_{60 \ldots .79}$
0	0	0	0	0	0	0
0	0	1	1	1	0	1
0	1	0	0	1	0	1
0	1	1	1	0	1	0
1	0	0	0	1	0	1
1	0	1	0	0	1	0
1	1	0	1	0	1	0
1	1	1	1	1	1	1

SHA-1 Secure Hash Function 512-bit Block Processing Function

- Each round takes as an input the current 512-bit block being processed $\mathrm{V}_{\text {q }}$ and the 160-bit buffer value $\{A B C D E\}$ and updates the contents of the buffer.
- Each round makes use of an additive constant K_{t}, where $0 \leq t \leq$ 79 indicates one of 80 processing steps across four rounds.

Additive Constants

- The value for these in hex are:
- For $0 \leq \dagger \leq 19$
- $K_{t}=5 A 827999$
- For $20 \leq \dagger \leq 39$
- $K_{t}=6 E D 9 E B A 1$
- For $40 \leq t \leq 59$
- $K_{t}=8 F 1 B B C D C$
- For $60 \leq t \leq 79$
- $K_{t}=$ CA62C1D6

Deriving 32-bit Words (W_{+})

- The first sixteen values of W_{+}are taken directly from the 16 words of the current block and the remaining values are defined as ...

$$
W_{t}=W_{t-16} \oplus W_{t-14} \oplus W_{t-8} \oplus W_{t-3}
$$

Single-step Operation

- The inputs to the step include:
- The contents of Registers A to E respectively.
- The additive constant K_{t}.
- The constant W_{+}.
- (A,B,C,D,E) <-
((E+F(t,B,C,D)+(A<<5)+W ${ }_{t}+$ $\left.\mathrm{K}_{\mathrm{t}}, \mathrm{A},(\mathrm{B} \ll 30), \mathrm{C}, \mathrm{D}\right)$

SHA-1 algorithm

- Note: All variables are unsigned 32 bits and wrap modulo 232 when calculating
- Initialize variables:
- $\quad \mathrm{hO}=0 \times 67452301$
- $\quad \mathrm{h} 1=0 \times \mathrm{EFCDAB89}$
- \quad h2 $=0 \times 98$ BADCFE
h3 $=0 \times 10325476$
h4 = 0xC3D2E1FO
- Pre-processing:
append the bit ' 1 ' to the message
append k bits ' O ', where k is the minimum number ≥ 0 such that the resulting message length (in bits) is congruent to $448(\bmod 512)$
- append length of message (before pre-processing), in bits, as 64-bit big-endian integer
- Process the message in successive 512-bit chunks:
break message into 512-bit chunks
for each chunk
break chunk into sixteen 32-bit big-endian words w[i], $0<=\mathrm{i}<=15$
Extend the sixteen 32-bit words into eighty 32-bit words:
for i from 16 to 79
$w[i]=(w[i-3]$ xor $w[i-8]$ xor $w[i-14]$ xor $w[i-16])$ leftrotate 1
Initialize hash value for this chunk:
$a=h 0$
$b=h 1$
$c=h 2$
$d=h 3$
$e=h 4$

SHA-1 algorithm

```
Main loop:
    for i from O to 79
        if 0\leqi\leq 19 then
            f = (b and c) or ((not b) and d)
            k=0\times5A827999
        else if 20\leqi\leq 39
            f=b xor c xord
            k=0\times6ED9EBA1
            else if 40\leqi\leq59
            f=(b and c) or (b and d) or (c and d)
            k=0\times8F1BBCDC
        else if 60\leqi\leq79
            f=b xor c xor d
            k=0\timesCA62C1D6
    temp = (a leftrotate 5) +f +e +k w w[i]
    e=d
    d=c
    c=b leftrotate 30
    b=a
    a= temp
Add this chunk's hash to result so far:
\(h 0=h 0+a\)
\(h 1=h 1+b\)
\(h 2=h 2+c\)
\(h 3=h 3+d\)
\(h 4=h 4+e\)
```

- \quad Produce the final hash value (big-endian):
- digest = hash $=h 0$ append $h 1$ append $h 2$ append $h 3$ append $h 4$

SHA-1 vs. MD5

- Security against brute-force attacks
- 32 bits longer than the MD5
- Producing any message having a given message digest is on the order 2^{160} for SHA-1
- Producing 2 messages having the same message digest is on the order 2^{80} for SHA-1
- Stronger against brute-force attack

Comparison (cont'd)

- Security against cryptanalysis
- Less vulnerable against cryptanalytic attacks discovered since MD5's design
- Speed
- Both algorithms rely heavily on addition modulo 2^{32} SHA-1 involves more steps and must process a 160-bit buffer.
- SHA-1 should be slower than MD5

Comparison (cont'd)

- Simplicity and Compactness
- Both are simple to describe and simple to implement
- Do not require large programs nor substitution tables
- Little-endian vs Big-endian architecture
- There appears to be no advantage to either approach

RIPEMD-160

- Developed under the European RACE Integrity Primitives Evaluation project
- By a group of researchers launching partially successful attacks on MD4 and MD5
- Originally a 128-bit RIPEMD

RIPEMD-160 Logic

- INPUT: a message of arbitrary length
- Overall processing: Similar to MD5 with a block length of 512 bits and a hash length of 160 bits
- Output: 160-bit message digest

Processing Steps

1. Append padding bits
2. Append length
3. Initialize MD buffer
4. Process message in 512-bit blocks
5. Output

Processing (cont'd)

- Initialize MD buffer
- 160-bit buffer
- 5 32-bit registers (A, B, C, D, E)
- $I V=\{A=67452301, B=E F C D A B 89, C=98 B A D C F E$, $D=10325476, E=C 3 D 2 E 1 F 0\}$
- Stored in little-endian format

Message Processing

- Process message in 512 bit blocks
- Module that consists of 10 rounds of processing of 16 steps each
- 10 rounds are arranged as 2 parallel lines of 5 rounds
- 4 rounds have a similar structure, but each uses a different primitive logical function $\left(f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right)$
- INPUT: 512-bit block $\mathrm{Y}_{\mathrm{q}}, 160$-bit $C V_{q}$ ABCDE(L), $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}(R)$
- Each round uses an additive 9 constants
- OUTPUT: $C V_{q+1}$ (addition is mod 2^{32})

Rounds

SMU
$-C V_{q+1}(0)=C V_{q}(1)+C+D^{\prime}$
$-C V_{q+1}(1)=C V_{q}(2)+D+E^{\prime}$
$-C V_{q+1}(2)=C V_{q}(3)+E+A^{\prime}$
$-C V_{q+1}(3)=C V_{q}(4)+A+B^{\prime}$
$-C V_{q+1}(4)=C V_{q}(0)+B+C^{\prime}$

Left Half

Right Half
Step Number Hexadecimal Integer part of: Hexadecimal Integer part of:

$0 \leq j \leq 15$	$\begin{gathered} \mathrm{K}_{1}=\mathrm{K}(j)= \\ 00000000 \end{gathered}$	0	$\begin{gathered} \mathrm{K}_{1}^{\prime}=\mathrm{K}^{\prime}(j)= \\ 50 \mathrm{~A} 28 \mathrm{BE} 6 \end{gathered}$	$2^{30} \times \sqrt[3]{2}$
$16 \leq j \leq 31$	$\begin{gathered} \mathrm{K}_{2}=\mathrm{K}(j)= \\ 5 \mathrm{~A} 827999 \end{gathered}$	$2^{30} \times \sqrt{2}$	$\begin{aligned} & \mathrm{K}_{2}^{\prime}=\mathrm{K}^{\prime}(j)= \\ & 5 \mathrm{C} 4 \mathrm{DD} 124 \end{aligned}$	$2^{30} \times \sqrt[3]{3}$
$32 \leq j \leq 47$	$\begin{gathered} \mathrm{K}_{3}=\mathrm{K}(j)= \\ \text { 6ED9EBA1 } \end{gathered}$	$2^{30} \times \sqrt{3}$	$\begin{aligned} & \mathrm{K}_{3}^{\prime}=\mathrm{K}^{\prime}(\mathrm{j})= \\ & 6 \mathrm{D} 703 \mathrm{EF} 3 \end{aligned}$	$2^{30} \times \sqrt[3]{5}$
$48 \leq j \leq 63$	$\begin{aligned} & \mathrm{K}_{4}=\mathrm{K}(j)= \\ & 8 \mathrm{~F} 1 \operatorname{BBCDC} \end{aligned}$	$2^{30} \times \sqrt{5}$	$\begin{aligned} & \mathrm{K}_{4}^{\prime}=\mathrm{K}^{\prime}(j)= \\ & \text { 7A6D76E9 } \end{aligned}$	$2^{30} \times \sqrt[3]{7}$
$64 \leq j \leq 79$	$\begin{gathered} \mathrm{K}_{5}=\mathrm{K}(j)= \\ \mathrm{A} 953 \mathrm{FD} 4 \mathrm{E} \end{gathered}$	$2^{30} \times \sqrt{7}$	$\begin{gathered} \mathrm{K}_{5}^{\prime}=\mathrm{K}^{\prime}(j)= \\ 00000000 \end{gathered}$	0

Compression

- Each round consists of a sequence of 16 steps [Figure 9.9]
- The processing algorithm of one round

```
A:=CV (0);B:=CV (1);C:=CV (2);D:=CV (3);E:= CV q
```

$A^{\prime}:=C V_{q}(0) ; B^{\prime}:=C V_{q}(1) ; C^{\prime}:=C V_{q}(2) ; D^{\prime}:=C V_{q}(3) ; E^{\prime}:=C V_{q}(4)$
for $\mathrm{j}=0$ to 79 do
$T:=\operatorname{rol}_{s(j)}\left(A+f(j, B, C, D)+X_{r(j)}+K(j)\right)+E ;$
$A:=E ; E:=D ; D:=\operatorname{rol}_{10}(C) ; C:=B ; B:=T$;
$T:=\operatorname{rol}_{s^{\prime}(j)}\left(A^{\prime}+f\left(79-j, B^{\prime}, C^{\prime}, D^{\prime}\right)+X_{r^{\prime}(j)}+K^{\prime}(j)\right)+E^{\prime} ;$
$A^{\prime}:=E^{\prime} ; E^{\prime}:=D^{\prime} ; D^{\prime}:=\operatorname{rol}_{10}\left(C^{\prime}\right) ; C^{\prime}:=B^{\prime} ; B^{\prime}:=T^{\prime}$;
enddo
$C V_{q+1}(0)=C V_{q}(1)+C+D^{\prime} ; C V_{q+1}(1)=C V_{q}(2)+D+E^{\prime} ; C V_{q+1}(2)=C V_{q}(3)+E+A^{\prime} ;$
$C V_{q+1}(3)=C V_{q}(4)+A+B^{\prime} ; C V_{q+1}(4)=C V_{q}(0)+B+C^{\prime}:$

Single Step

RIPEMD-160 Strength

- Resistance to brute-force attack
- All 3 algorithms are invulnerable to attacks against weak collision resistance
- MD5 is highly vulnerable to birthday attack on strong collision resistance
- SHA-1 and RIPEMD-160 are safe for the foreseeable future
- Resistance to cryptanalysis
- Designed specifically to resist known cryptanalytic attacks
- The use of two lines of processing
- gives RIPEMD-160 added complexity
- should make cryptanalysis more difficult than SHA-1

Speed

- Speed
- All 3 algorithms rely on addition modulo 2^{32} and simple bitwise logical operations
- The added complexity and number of steps of SHA-1 and RIPEMD-160 does lead to slowdown compared to MD5

Comparison

	SHA-1	MD5	RIPEMD-160
Digest length	160 bits	128 bits	160 bits
Basic unit of Processing	512 bits	512 bits	512 bits
Number of steps	$80(4$ rounds of 20$)$	$64(4$ rounds of 16)	160 (5 paired rounds of 16)
Maximum message size	$2^{64}-1$ bits	∞	∞

Performance Comparison

Name	Bit-length	Rounds \times Steps per Round	Relative Speed
	128	3×16	1.00
MD4	128	4×16	0.68
MD5	128	4×16 twice (in parallel)	0.39
RIPEMD-128	160	4×20	0.28
SHA-1	160	5×16 wice (in parallel)	0.24

HMAC

- Developing a MAC derived from a cryptographic hash code
- Motivations
- generally execute faster in software than symmetric block ciphers
- No export restrictions from US or other countries for cryptographic hash code

HMAC (cont'd)

- HMAC Design Objectives [RFC2104]
- To use available hash functions.
- To allow for easy replaceability of the embedded hash function
- To preserve the original performance
- To use and handle keys in simple way
- To have a well understood cryptographic analysis of the strength of the authentication mechanism

HMAC Algorithm

$$
H M A C_{K}=H\left[\left(K^{+} \oplus o p a d\right) \| H\left[K^{+} \oplus i p a d \| M\right]\right]
$$

1. Append zeros to the left end of K to create a b-bit string K^{+}
2. $X O R K^{+}$with ipad to produce the b-bit block S_{i}
3. Append M to S_{i}
4. Apply H to the stream generated in step 3

Algorithm (cont'd)

5. $X O R K^{+}$with opad to produce the b-bit block S。
6. Append the hash result from step 4 to S 。
7. Apply H to the stream generated in step 6 and output the result

Algorithm Logic

- Pseudorandom generation of 2 keys from K
- XOR with ipad/opad results in flipping one-half of the bits of $K-S_{i} / S_{0}$
- More efficient implementation is possible.

Security of HMAC

- Depends on the cryptographic strength of the underlying hash function
- Generally expressed in terms of prob. of successful forgery with a given amount of time and number of message-MAC pairs

